Narcosis and Emulsion Reversal by Inert Gases
نویسندگان
چکیده
Investigations of the effect of high pressures of Na (100 to 130 atmospheres) and of Ar (60 to 80 atmospheres) showed that these gases are effective in reversing the phases of an oil in water emulsion. Nitrous oxide did not cause reversal at pressures as high as 53 atmospheres nor did helium as high as 107 atmospheres. We found CO(2) most effective in reversing the emulsions and attributed this to its chemical properties. It is suggested that these observations may help to explain the narcotic effects of inert gases.
منابع مشابه
Recent neurochemical basis of inert gas narcosis and pressure effects.
Compressed air or a nitrogen-oxygen mixture produces from 0.3 MPa nitrogen narcosis. The traditional view was that anaesthesia or narcosis occurs when the volume of a hydrophobic site is caused to expand beyond a critical amount by the absorption of molecules of a narcotic gas. The observation of the pressure reversal effect on general anaesthesia has for a long time supported the lipid theory....
متن کاملModelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers.
Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar a...
متن کاملA review of recent neurochemical data on inert gas narcosis.
Nitrogen narcosis occurs in humans at around 0.4 MPa (4 ATA). Hydrogen narcosis occurs between 2.6 and 3.0 MPa. In rats, nitrogen disturbances occur from 1 MPa and a loss of righting reflex around 4 MPa. Neurochemical studies in striatum of rats with nitrogen at 3 MPa (75% of anesthesia threshold) with differential pulse voltammetry have demonstrated a decrease in dopamine (DA) release by neuro...
متن کاملTheoretical considerations on the ultimate depth that could be reached by saturation human divers
The occurrence of paroxysmal narcotic episodes including psychotic-like symptoms in divers participating to experimental deep diving programs with various gas mixtures has constituted, beyond the classical symptoms of the high-pressure neurological syndrome, the major limitation for deep diving. With the development of new saturation deep diving programs and experiments by the eastern nations, ...
متن کاملEffects of nitrogen and helium on CNS oxygen toxicity in the rat.
The contribution of inert gases to the risk of central nervous system (CNS) oxygen toxicity is a matter of controversy. Therefore, diving regulations apply strict rules regarding permissible oxygen pressures (Po(2)). We studied the effects of nitrogen and helium (0, 15, 25, 40, 50, and 60%) and different levels of Po(2) (507, 557, 608, and 658 kPa) on the latency to the first electrical dischar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 40 شماره
صفحات -
تاریخ انتشار 1957